Saturday, November 12, 2011

LessLoss Laminar Streamer SD card player


















The Laminar Streamer has been developed by LessLoss from the very ground up, without using any modules or ready-made operating systems available for other purposes (Linux, Windows, etc.). In it, we have created the conditions for the ultimate audio stream to be formed directly from the audio clock. To understand the uniqueness of our solution, consider this:

The audio sampling frequencies available today are as follows:

44.1k / sec (Redbook)
48k / sec
88.2k / sec
96k / sec
176.4k / sec
192k / sec

What you can see from the above list is that there are actually two base frequencies, namely 44.1 and 48, which are multiplied by two and three times. Hence, the list is made up of two main frequencies and their whole-number multiples.

For a perfect stream to form, we need the data to be associated with a running audio clock. This is the only function the operating system should have. Everything else will demand processor time, and, hence, will introduce tiny deviations in the perfect timing we need.

What we have managed to do is to create our own audio dedicated operating system which functions exactly off of the very audio clock. This means that when the operating system is functioning (boot time and SD card recognition is less than 0.2 seconds), the data read off of the SD card is directly coupled to the clock's wavefronts and that is all. The stream is the result of 44,100 such operations per second. And this stream is very close to flawless in the time domain.

When a file is to be played which needs, say, a 48 kHz clock, this is then no longer possible with the original 44.1 kHz clock we used for the 44.1k file before. The solution most computer operating systems use to solve this is an extensive array of clocking functions, each running at different speeds and through what is known as PLLs (Phase Locked Loops) which introduce Jitter into the stream. However, the solution is easier in an engineering sense because only one clock is necessary for all of the different frequencies listed above. You can "round out the clock ticks" to get to the frequencies you need. But this "rounding out" probably need not be discussed here with you. Of course, it results in "that harsh digital computer audio sound".

Instead, what we have done, is have engineered a completely synchronous operating system itself. When a 48k file needs to be played, the 48k clock is turned on and the 44.1k clock is turned off, and the operating system itself begins running off of the new active clock. This is done seamlessly and in no time. No clicks or pops result in the digital stream. This seamless functionality and operating system's tight hold on both the clock and data streams are what make this system unique. Any file of any sampling frequency can be played right after one another, without the sloppy desktop computer CPU operations averaging out the clock speeds to make this work. Whereas an office PC is good for fast operations, we need not that. We need perfect timing operation, something which is not foreseen in the big operating systems.

The Laminar Streamer will be compatible with any sound file which ends in either .wav or .aiff and which was brought onto the SD card by either a PC or MAC computer. The SD card size will not matter, either. Folder names will be created by the user on their own office PC or MAC. We do not want people to have to pay for office computer functionality using their audio money! Let the mass-production world take care of that. We'll take care of the stream, the perfect timing needed to get so deep into your digital recordings, you'll completely rediscover everything you've ever heard in digital.

Compatibility will be with any DAC which has S/PDIF input. Use ours as a reference, or any other DAC you like the sound of. The further quest for quality will then be reduced to the quality of the power provided to both the Laminar Streamer and the DAC in use together with it.

Of course, design wise, we are going to provide something very special. We want the listening experience to be beautiful, but also the domestic visual experience as well. The Laminar Streamer will be on par with the design of our other fine products, such as the Tunnelbridge, the Firewall, and the Blackbody.

If the digital stream is laminar, truly laminar, then the largest influence of quality has already been met, and true appreciation of the musicianship and all of the higher content truly present in the recordings can much more readily be experienced.

I look forward to serving you with more info about the new Laminar Streamer as it becomes available. We are sure that the divorce of the office PC from the listening station will be an attractive alternative to the invasive information overload we already experience in our everyday lives, and will help bring back a tranquil serenity and meditative aspect to our private listening chambers. We will be so close to our beloved artists and their messages that it will feel only natural to take pause from our emails and other office routines.

If all goes to plan, we will demonstrate the Laminar Streamer in finished form at the New York Audio Show, April 13-15, 2012, in the Waldorf-Astoria hotel, 18th floor, in the Sutton Suite conference room.




To all visitors - To keep this High-End blog alive, everyone must go click-crazy on the google ads - the site needs minimum 1000 clicks per day.

If every visitor clicks on the ad banners before they leave - for example one click or more at the two Google banners on the left, and then on the orange text links in the right Google banner.

Just hold down the CTRL-key (MAC users use the CMD-key) and then left-click with the mouse - a new tab opens automatically - this is the fastest and easiest way.

If the click rate is to low this blog will close at the end of December 2011.

Thank you.

If you set the target attribute to "_blank", the link will open in a new browser window or a new tab.